MMath-I, Linear Algebra (Final Test)

Instructions: Total time 3 Hours. Maximum marks 50. All questions are compulsory. Refrain from copying from a classmate or any internet source/book. You may use results proved in the class without proof. Use concepts, notations, terminology, results, as covered in the course. If you wish to use a problem as a result, supply its solution too.
Teacher's contacts: email: maneesh.thakur@gmail.com Phone: 9650330176.

Question 1. Let $(V,\langle\rangle$,$) be a finite dimensional inner product space over k$, where $k=\mathbb{R}$ or \mathbb{C}. Let V^{*} denote the dual space of V. Prove that for every $f \in V^{*}$, there exists a unique vector $w_{f} \in V$ such that $f(v)=\left\langle v, w_{f}\right\rangle$ for all $v \in V$.

Question 2. Consider \mathbb{C} as an algebra over \mathbb{R}. Prove that $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \cong \mathbb{C} \times \mathbb{C}$ as algebras over \mathbb{C}.

Question 3. (i) Prove that any matrix $A \in G L_{n}(\mathbb{C})$ satisfying $A^{6}=I$ is diagonalizable.
(ii) Determine the number of similarity classes of matrices $A \in G L_{3}(\mathbb{Z} / 2 \mathbb{Z})$ that satisfy $A^{6}=I$, where I is the identity matrix.

Question 4. Let q be power of an odd prime and \mathbb{F}_{q} be the field having q elements. For a matrix A, let χ_{A} and m_{A} respectively denote its characteristic polynomial and minimal polynomial over \mathbb{F}_{q}. Compute the number of elements in the set $\mathcal{C}=\left\{A \in G L_{2}\left(\mathbb{F}_{q}\right) \mid \chi_{A}=m_{A}\right.$ and m_{A} is reducible $\}$.

Question 5. Let U, V, W be finite dimensional vector spaces over a field k. Assume given a nondegenerate bilinear form $B: V \times V \longrightarrow k$. Prove that there is a natural (i.e. free from any choice of bases) isomorphism of vector spaces $\operatorname{Hom}_{k}(U \otimes V, W) \cong \operatorname{Hom}_{k}(U, V \otimes W)$.

